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Abstract:A Paper Presents Optimization Technique of Multirate 
Polyphase Decimator. Many efficient algorithms and architectures 
developed for the design of low complexity, bit parallel Multiple 
Constant Multiplications operation which dominates the complexity of 
DSP systems. However, major drawbacks of present approaches are 
either two costly or not efficient enough. On the other hand, MCM and 
digit-serial architecture offer alternative low complexity designs, since 
digit-serial operators occupy less area and are independent of the data 
word length. Multiple Constant Multiplications is efficient way to reduce 
the number of addition and subtraction in FIR filter implementation. 
The proposed device Multirate Polyphase decimator is designed by 
different techniques to reduced circuit complexity. Adders, multipliers 
and latches are reduced by different logic due to which power and area 
in system is reduced at great extend. The simulation of parameters is 
analyzed by using synopsis 45 nm and Xilinx. Experimental results have 
shown the efficiency of the proposed technique and the analysis of 
different architecture. Recent advances in mobile computing and 
communication applications demand low power and high speed VLSI 
DSP systems. The digital filters employed in mobile systems must be 
higher order and realized to consume less power at high speed. This 
Multirate design methodology is systematic and applicable to many 
problems.  
 
Keywords: VLSI-Very large scale integrated circuit, RTL-Register 
transfer logic, VHDL-Very high speed hardware description language, 
DSP-Digital Signal Processing, FIR Finite impulse response, FPGA: 
Field Programmable gate array, MCM-Multiple Constant 
Multiplication 

   
I.INTRODUCTION: 

     Many decimation filters implement a Polyphase structure. 
The Polyphase structure is just another efficient filter for 
decimation like the direct form decimator, where the filter 
output is computed at the decimated rate. FIR filters are 
widely applied in multi standard wireless communications. 
One of the most important operations in DSP is finite impulse 
response filtering. The FIR filter performs the weighted 
summations of input sequences and is widely used in mobile 
communication systems for variety of tasks such as 
channelization, channel equalization, pulse shaping and 
matched filtering due to their properties of linear phase and 
absolute stability [2].  
         A signal processing system that filters the data and has 
an output data rate is different than the input data rate called 

Multirate filter. The ratio of the output data rate to the input 
data rate is known as the Multirate factor. In decimation and 
Interpolation Multirate filters, the normalized transition 
bandwidth inversely relates to the decimation factor M and 
the interpolation factor L. The order of a decimation or 
interpolation filter increases as M or L [21].we can use 
multistage Multirate filters to simplify Multirate filters that 
have large sampling frequency conversion factors. Polyphase 
is a way of doing sampling rate conversion that leads to very 
efficient implementations. Sampling rate reduction is 
required for efficient transmission, and a sampling rate 
increase is required for the regeneration of the speech. The 
processes of sampling rate reduction called decimation. It can 
be efficiently implemented using finite impulse response 
digital filters [4]. It is found that efficient implementations of 
low pass FIR filters could be obtained by a process of first 
reducing the sampling rate, filtering, and then increasing the 
sampling rate back to the original frequency. The process of 
sampling rate reduction in Multirate Polyphase Decimator is 
shown in fig.1 (a)-(b)-(c). 
 

 
Fig. 1(a) 

     

 
 

Fig. 1(b) 
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Fig.1(c) Polyphase decimator 

                         
 
    FIR based filtering is advantageous in many digital signal 
processing systems due to the possibility of exact linear phase 
and freedom of stability problems. However, the major 
drawback versus IIR filters is the high cost of the 
implementation as well as high power consumption. 
Recently, several schemes have been proposed to reduce the 
arithmetic complexity of both FIR and IIR structures, e.g., 
sub expression sharing, multiple-constant multiplication [3] 
[5], and multiplier blocks. Special low sensitivity filter 
structures are another route to reduce the FIR filter 
complexity. Further, frequency masking techniques and 
Multirate structures together with the design methods can be 
used to implement low complexity and high speed FIR filters. 
In this paper, we discuss the design of a Polyphase 
decimation of the sample frequency [7].  
 

II.MULTIRATE POLYPHASE DECIMATOR DESIGN 

METHODOLOGY: 
    Low power, High performance is two most important 
criteria for many signal processing system designs. 
Particularly, real time multimedia applications; there have 
been many approaches to achieve this goal at different 
implementation level. We have introduced a new architecture 
based low power and high performance design technique. i.e. 
Multirate approach and combine it along with DSP 
techniques such as shifting, carry look ahead and folding etc. 
to design several DSP blocks like FIR/IIR and Polyphase 
filtering. In this, we design Multirate Polyphase Decimator in 
direct form, transposed form, using MCM and Digit serial 
architecture.The development of efficient algorithms has to a 
high extent been motivated by the use of MCM blocks in FIR 
filters. For direct transposed form FIR filters the input is 
multiplied with the filter coefficients as shown in Fig. 2(a)-
(b), where the MCM block is marked with a dashed box. 
Using transposition, direct form FIR filter is obtained, where 
the sum-of-product computation is marked with a dashed 
box[13]. Hence, MCM is also efficient for sum-of-product 
computations. 

 
Fig. 2(a) 

 

 
Fig.2 (b) 

 
   The digit-serial MCM operation in shift-adds architecture 
consists of digit-serial addition and subtraction operations, 
and D flip-flops for the shift operations, as opposed to the bit-
parallel MCM operation, where shifts are free in terms of 
hardware. The high-level algorithm aims to find a solution 
with the fewest number of additions, subtractions, and shift 
operations. The complexity of the resulting realization will be 
depending on three factors. First, the size, numbers, and type 
of MCM blocks. Second, the number of delay elements, and, 
finally the number of structural additions, i.e., the additions 
that are not part of the MCM block (additions outside of the 
dashed box in Fig. 2 (a)). Here, we focus the discussion on 
Polyphase decomposed decimation filters, but identical 
results can be derived for the filter bank case [12].  
   Another concept can be used to optimize the parameters is 
multiplication using shifts, additions, and subtractions 
realization without general multipliers. The number of 
additions and subtractions can be significantly reduced by 
using common partial results [1]. As additions and 
subtractions have similar complexity as an example, 
consider the constant multiplications 29x and 43x. Observe 
from Figure 3 & 4 that the sharing of partial products 3x and 
5x reduces the number of operations from 6 to 4. 

  
Fig. 3 Shift add implementation of 29x and 43x (a) without partial   product 

sharing (b) with partial product sharing 
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Fig.4 The digit serial operation when d is equal to 3: (a) Addition operation 

(b)Subtraction Operation(c)Left shift by 2 times (d)Left shift by 4 times 

 
 The direct form is generally preferred because of its higher 
performance and power efficiency. The problem of designing 
Polyphase decimator has received a great attention due to 
large number of multiplications [7]. This implementation 
must satisfy the enforced sampling rate constraints of the real 
time DSP applications and must require less space and power 
consumption. Present works have focused on design of 
Multirate Polyphase decimator by filters, data generator 
latches and adder. As the coefficients of an application 
specific filter are constant, the decomposition is more 
efficient than employing multipliers. The complexity of FIR 
filters in this case is dominated by the number of additions 
and multiplications [10]. The multiplier block of the digital 
FIR filter in its direct form is implemented in the design so 
that significant impact on the complexity and performance of 
the design will be improved. Also, Polyphase filter is 
designed using MCM and digit serial adders which overcome 
problem of complexity, design performance and producing 
very low area [9][17]. Authors have used the different 
techniques to reduce the complexity in the design and 
implemented the Polyphase filter on FPGA platform using 
cyclone-II device. Finite impulse response filters are of great 
importance in digital signal processing systems since their 
characteristics in linear phase and feed forward 
implementations make them very useful for building stable 
high performance filters. In this, Polyphase decimator filter 
with a factor of 18 is designed using three cascaded filters. 
The impulse response is obtained by convolution of three 
vectors with 18 ones in each, The trade-off between additions 
and delay elements is circuit and technology dependent, and, 
hence, should be evaluated on the circuit level. 
     Another method which requires moderate sample rate, 
these systems may be ineffective. Bit serial system will be 
too slow and bit parallel system is faster. Therefore, digit 
serial systems have become attractive for digital designers in 
the recent years. These systems process multiple bits of the 

input word, referred to as the digit size, in one clock cycle. 
For a digit size of unity, the system reduces to a bit serial, and 
for a digit size equal to the word length, the system reduces to 
a bit parallel system. Most of the DSP computations involve 
the use of multiply accumulate operations. Therefore, the 
design of fast and efficient multipliers is imperative. The bit 
serial systems, which process one bit of the input sample in 
one clock cycle, are area efficient and ideal for low speed 
applications. On the other hand, bit parallel systems which 
process one whole word of the input sample in one clock 
cycle, are ideal for high speed applications[4][8]. 
 

III.RESULT: 
  POLYPHASE DECIMATOR:  
 I] Following figure 5(a) – (d) shows direct form of 

Polyphase decimator which uses latches in direct form, this 
system is very efficient because it required very less power 
dissipation and maintaining higher speed. But this design 
consumed more area.   

        

  Fig. 5(a) RTL view of Polyphase decimator in direct form 

 

                   Fig. 5(b) Internal structure of filter in direct form 
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Fig.5(c)   Design waveform 

  
Fig.5(d) Design vision schematic of Polyphase Decimator in 

Direct form  

II] Following figure 6(a)-(d) shows transpose form of 
Polyphase decimator. This design uses latches in transpose 
form. Therefore, this system required less area than direct 
form by   maintaining moderate power dissipation and speed.    

 
Fig. 6(a).Multirate Polyphase decimator in transpose form 

 

 
Fig. 6(b) Internal structure of filter in direct form 

 
Fig.6(c)   Design waveform 
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Fig.6(d) Design vision schematic of  Polyphase Decimator in transpose 
form 

III] Authors efforts are directed towards reduction of area at 
great extend succeeded by using MCM of Multirate 
Polyphase decimator. This design consumed moderate power.                                                            

 

 
Fig. 7(a).Multirate Polyphase decimator using MCM 

 
                  Fig. 7(b) Internal structure of filter in Direct form 

 
Fig.7(c)   Design waveform 

 
Fig.7(d) Design vision schematic of polyphase decimator using MCM 
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IV] Following figure 8(a)-(d) shows transpose form of 
Polyphase decimator which uses MCM & digit serial adder. 
This system required less area and maintaining higher speed. 
                                                        

 
 

Fig. 8(a)Multirate Polyphase decimator using MCM & Digit 
Serial architecture 

 

 
Fig.8(b) Internal structure of filter in direct form 

 
                                  Fig.8(c)   Design waveform     

 

    

    Fig.8(d) Design vision schematic of polyphase decimator in mcmds 

The Multirate Polyphase decimator is implemented on FPGA 
cyclone –II device which shown complete setup of the design 
as follows                         
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Fig. 9 Complete set up of design of Multirate Polyphase 

Decimator showing output 100111001010 

 
TABLE 1 

Type Area[um2] Power (uw) Speed (MHz) 
Direct Form 29741 70 190.621 

Transpose Form 22579 173 111.025 
Using MCM 13256 180 100.604 

Using MCM and 
Digit Serial 
architecture 21271 330 151.579 

 
   Following graphs shown comparative analysis of 
parameters of Multirate Polyphase decimator using different 
techniques. 
 

 
                                                     

Graph 1 

 

 
Graph 2 

 

 
                                                 Graph 3 

 
Graph 4 

 

 
Graph 5 
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Graph 6 

CONCLUSION: 
      Design and Implementation of Multirate Polyphase 
decimator is presented. Also, done the Optimization of the 
Module using different techniques and methodology. Authors 
have used Active-HDL for the simulation and verified design 
using FPGA Cyclone–II device. The optimized parameters 
power dissipation and area analyzed by using synopsis 45 nm 
whereas speed of the system by using Xilinx. Multirate 
Polyphase decimator designed using different form which 
provides power, area and speed for system. The results are 
given separately and comparison in tabulation form found 
satisfactory. Physical testing verified that implementation 
worked correctly. Polyphase decimator using MCM reduces 
the area of the system to a great extent. Direct form of 
Multirate Polyphase filter is best suited for implementation of 
digital signal processing system which requires very less 
power dissipation and maintaining higher speed. The 
proposed methodology provides a systematic way to derive 
low power, high speed system. Multirate Polyphase 
decimator design using MCM and digit serial adders 
overcome problem of complexity, design performance and 
producing very low area by maintaining moderate speed. 
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